
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 21 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Reviews in Physical Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713724383

Progress in computer simulations of liquid crystals
Mark R. Wilsona

a Department of Chemistry, University of Durham, Science Laboratories, Durham

To cite this Article Wilson, Mark R.(2005) 'Progress in computer simulations of liquid crystals', International Reviews in
Physical Chemistry, 24: 3, 421 — 455
To link to this Article: DOI: 10.1080/01442350500361244
URL: http://dx.doi.org/10.1080/01442350500361244

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713724383
http://dx.doi.org/10.1080/01442350500361244
http://www.informaworld.com/terms-and-conditions-of-access.pdf


International Reviews in Physical Chemistry,
Vol. 24, Nos. 3–4, July–December 2005, 421–455

Progress in computer simulations of liquid crystals

MARK R. WILSON*

Department of Chemistry, University of Durham,
Science Laboratories, South Road, Durham, DH1 3LE

(Received 04 October 2005; in final form 15 September 2005)

This article reviews some of the recent progress in the simulation of liquid crystals across a
range of length and time scales. Simulators now have an extensive range of models at their
disposal, ranging from fully atomistic studies where each atom is represented in a simulation,
via hard or soft anisotropic potentials, to lattice models and director-based simulation methods.
Each of these provide access to different phenomena. The progress towards accurate atomistic
modelling of nematics is discussed in detail, pointing to improvements in force fields made
recently and discussing the progress towards accurate prediction of material properties.
Three material properties are discussed in detail: elastic constants, rotational viscosity and
helical twisting powers. The simulation methods that can be employed to extract such properties
are reviewed and the insights provided by recent results from atomistic and coarse-grained
models are discussed. The article points also to the recent success of coarse-grained modelling
in helping to understand the structure of complex macromolecular liquid crystals: liquid crystal
polymers and liquid crystal dendrimers in which the macromolecules contain different types of
interaction site. Finally, it is worth noting that throughout Nature liquid crystals occur as the
archetypal self-assembled materials; able to form well-defined self-organized structures, which
are often ordered at the nanoscale. With this in mind, some perspectives on the future use of
these materials are presented, with suggestions for how liquid crystal simulation can be used
to help in the design of the next generation of nanoscale devices.
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1. Introduction

Liquid crystals are the quintessential soft self-organizing molecular materials. They are
able to form anisotropic structures with bulk material and electronic properties that are
directional, while simultaneously retaining many characteristics that are more akin to
fluids. This combination of properties from both the crystal and liquid regimes have
led to interesting applications, which arise (in many cases) from the ability of liquid
crystals to switch in response to external stimuli. Most ubiquitous of these is the
role played by liquid crystal displays (LCDs), which have infiltrated most aspects of
modern life from wrist-watches to computer screens [1]. Less well known are uses of
liquid crystals as colour-tunable lasers [2–4], as sensitive temperature sensors in medical
applications and non-destructive testing, as functional polymers [5, 6], as materials for
adaptive optics [7, 8], and as phase modulators in optical telecommunications [9, 10].
More intriguing still are the possible applications of liquid crystalline materials in the
next generation of self-assembled photonic nanostructures [11] and in a new generation
of materials for biomimetic applications [12].

Basic liquid crystal theory is well established. The idea of a simple molecular mean
field theory for the nematic–isotropic transition was developed by Maier and Saupe
in the 1950s based on the idea of anisotropic dispersion forces [13]. The Maier–
Saupe approach works well in explaining the temperature dependence of nematic
order and the weakly first-order nature of the nematic–isotropic phase transition for
thermotropic LC materials. Prior to this, in the 1940s, Onsager was able to show
that rigid rod particles should undergo a transition from an isotropic to a nematic
phase as a function of density [14], thus providing a basis for liquid crystal formation
in colloidal systems. Indeed it is now known that the presence of anisotropic excluded
volume interactions is the main driving force for the formation of mesophases in
thermotropic, lyotropic and colloidal systems. In contrast to theory, the first successful
simulations of liquid crystals occurred much later. Studies of the simplest phenomenol-
ogical models did not occur until the 1970s [15], and the first simulations of some of the
most common liquid crystal phases, such as the smectic-C, were carried out in the late
1990s [16]; and it is only in the last few years that real progress has been made towards
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accurate atomistic simulations and the use of simulation methods to obtain material
properties.

In this review article, I highlight some of the recent progress made in the simulation
of liquid crystals, concentrating on improvements in atomistic modelling, in the
calculation of material properties in bulk liquid crystalline phases, in the modelling
of macromolecular materials and in progress made towards bridging across different
time and length scales. The paper starts with a brief review of the different models,
which are typically employed in the simulation of LC systems.

2. Simulation of liquid crystals: crossing the time and length scales

Arguably, the most difficult problem for molecular simulation today involves linking
together simulations which span different time and length scales. As illustrated in
figure 1, important phenomena occur at a range of time scales, from the fast bond
vibrations in a molecule (which atomistically can be followed with a 1 fs time-step),
to rearrangement of the liquid crystalline director in a nematic (which occurs over
several ns), to the growth of smectic layers or the rearrangement of small domains

Figure 1. An illustration of the different time scales used in simulation. Molecular bond vibration and
intermolecular motion can reasonably be followed with time frames of 1 and 10 fs respectively; diffusion
within a molecular liquid usually requires simulations of at least 1 ns; the growth of orientational order and
uniform alignment of a nematic director for a few hundred molecules may require up to 10 ns (and this time
can be extended considerably for larger system sizes or if the simulation is close to a phase transition); smectics
and liquid crystalline polymers will require at least an order of magnitude longer time scales even for small
system sizes. There is a whole range of interesting liquid crystalline static and dynamics phenomena, which
occur on far longer length scales and time scales than can be studied by molecular simulation. These are best
handled by continuum modelling.
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in a liquid crystalline polymer (which may take tens or hundreds of ns). This problem is
compounded by the length scales required to view different phenomena. Within a
molecular description, a few hundred molecules in an approximate volume of (60 Å)3

may be sufficient to study a nematic phase and to calculate many of the thermodynamic
and material properties of that phase. However, several thousand molecules may be
required to see convincing smectic layers, or to study the interactions between a
liquid crystal and a surface. Further along the length scales, a molecular description
starts to become problematic when considering the lengths used in a LC display.
A typical layer spacing for a twisted nematic display may be 5 mm or more and a
(5 mm)3 slab of nematic would have around 2:4� 1011 molecules. Here, the number
of molecules required is far too large for a molecular level description of a liquid crystal.
There are now several excellent approaches for modelling beyond the molecular scale.
These include lattice Boltzmann nematodynamics techniques [17–22], minimization of
the Landau–de Gennes free energy [23] and continuum theory approaches [24, 25].
Recent work in mesoscopic simulations of liquid crystals has been reviewed by Care
and Cleaver [26]. This article will, however, concentrate on molecular level modelling
and the next section reviews some of the models currently available.

3. Simulation models for liquid crystal phases

For liquid crystals, the problems posed by different time and length scales has led to a
range of computer models being developed. One of the earliest of these was the simple
cubic lattice model of Lebwohl and Lasher [15]. Here, a molecular description is
eschewed in favour of a nearest neighbour interaction term for a lattice spin which
represents the direction of order within a small fragment of nematic liquid crystal.
Nearest neighbour sites i and j interact through a potential of the form

Uij ¼ ��P2 cos �ij
� �

, ð1Þ

which is minimized when the angle �ij between lattice spins is 08 or 1808. As a function
of temperature, this model gives rise to a weakly first-order phase transition and
a discontinuous change in the order parameter, S2 ¼ hP2ðcos �Þi. Whereas in 1972
Lebwohl and Lasher were able to study a maximum of 8000 spins (20� 20� 20),
today simulations can comfortably look at models with >54 000 spins, which is
sufficient to study structural transitions in nematic thin films [27]. This figure could
be pushed relatively easily to several million spins on parallel machines.

Suitable molecular potentials are required to move beyond a lattice description of
a liquid crystal phase. Two classes of model have been developed, which have proved
particularly popular amongst simulators: hard-nonspherical models and soft-
nonspherical models. In the former, hard ellipsoids [28–33] and hard spherocylinders
[34, 35] (see figure 2) have been simulated extensively. Hard ellipsoids exhibit nematic
ordering and hard spherocylinders exhibit nematic, smectic-A and smectic-B phases.
A recent study of three rigidly linked hard spherocylinders has demonstrated the
formation of a smectic-C phase [36].

424 M. R. Wilson

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



For hard particle models, temperature is not important and phase behaviour is
governed solely by changes in the density. Here the driving force for mesophase
formation is the competition between rotational and translational entropy. As density
is increased excluded volume becomes more important and the system is able to lower
its free energy by aligning and thus increasing translational entropy at the expense of
rotational entropy. While this approach may not be fully representative of transitions
in thermotropic mesogens, the model certainly captures the essential physics for
many colloidal systems. Several reviews of key hard particle simulations have appeared
[37, 38].

The most popular soft-nonspherical model is the Gay–Berne (GB) potential [39–45].
Here, the pair-interaction energy is governed by both an anisotropic shape (usually
ellipsoidal for the Gay–Berne model) and an anisotropic attraction energy. These
features are embodied in a Lennard-Jones (LJ) like potential

Uij ûui, ûuj, rij
� �

¼ 4�ij ûui, ûuj, rij
� � �s

r� � ûui, ûuj, r̂rij
� �

þ �s

 !12

�
�s

r� � ûui, ûuj, r̂rij
� �

þ �s

 !6
2
4

3
5 ð2Þ

Figure 2. Snapshots taken from simulations of hard spherocylinders with aspect ratio L=D ¼ 5 at different
densities. Isotropic liquid, nematic, smectic-A and solid phases are shown. Reproduced from figure 2 of
reference [35] with permission of the American Institute of Physics.

Computer simulations of liquid crystals 425

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



where, for particles i and j, the LJ � parameter and the well-depth parameter � are
dependent on both the separation vector, rij, and the relative orientation of the long
axes of the two GB particles, ûui, ûuj. The Gay–Berne potential is characterized normally
by four parameters, which determine the overall form of the potential, �, �0, � and �.
� is related to the length �e and the breadth �s of the molecule; and enters the expres-
sion for � ûui, ûuj, r̂rij

� �
and �ij ûui, ûuj, rij

� �
. � and � adjust the shape of the potential and enter

the expression for �ij ûui, ûuj, rij
� �

; and �0 is given by

�0 ¼
�1=�s � �

1=�
e

�1=�s þ �
1=�
e

, ð3Þ

where �s and �e are respectively the maximum well depth for the interaction of two GB
particles in the side-to-side and end-to-end configurations. Thus GB potentials can
be represented by the notation GBð�,�0,�, �Þ, or alternatively, by the notation
GBð�, �0,�, �Þ, where � ¼ �e=�s and �

0 ¼ �s=�e. Examples are shown in figure 3, where
Uij is plotted for four different relative orientations of particles using three forms of
the potential. As pointed out by Zannoni [44] and others, a choice of GBð�, �0, 0, 0Þ
corresponds to a soft ellipsoid and GBð0, 0,�, �Þ corresponds to a spherical
Lennard-Jones potential.

An advantage of the GB model is that it can, in principle, be tuned to represent the
interaction of a wide-range of different thermotropic mesogens by adjusting the � and �
parameters and by changing the relative well depths in figure 3. Gay–Berne models
have been developed for disc-like molecules [48] and a variant has been produced for
biaxial molecules [49]. Because the GB potential is based on a single site, it is sufficiently
cheap to simulate an entire phase diagram [41, 47, 50]. An example is shown in figure 4,
which shows the introduction of a smectic-A phase as the potential is lengthened from
�¼ 3.0 to �¼ 4.0. In comparison to real thermotropics, there are some disadvantages of
this model. Probably the most serious is the fact that following an isobar on figure 4
would lead to a large density change as temperature was increased through the phase
transitions Sm!N! I. In reality however the density changes in real liquid crystals
tend to be quite small, around the order of 1% at the nematic–isotropic phase
transition. It may be possible to overcome this problem with more realistic parameter-
izations for the GB potential [51], where the ratios of side-by-side to end-to-end well
depths are increased considerably. However, as yet there has been little work on
producing full phase diagrams for such parameterizations.

The Gay–Berne model is relatively easy to combine with other potentials and
in recent years there have been several interesting studies, including GBþ point
dipole [52] leading to ferroelectric phases, and GBþ point quadrupole leading to a
smectic-C phase [16]. These studies are reviewed by Zannoni [44] and by Bates and
Luckhurst [53].

One of the powerful features of single site potentials arises from their comparatively
low computational cost. This makes it possible to model very large numbers of
individual molecules and is particularly useful for studying interfacial phenomena.
Consequently, there has been considerable work on studying the properties of liquid
crystals in contact with solid surfaces [54–57] and looking at a nematic–isotropic
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interface [58–61]. The former is of particular practical importance because surface-
induced planar or homotropic ordering is used in most liquid crystal displays.
Moreover, surface pre-tilt can be used to improve switching in certain display modes
and the use of three-dimensional surface features to influence director orientation is
being actively investigated as a way of introducing new fast-switching display modes
for a new generation of displays.

While this review is principally concerned with thermotropic liquid crystals, it is
appropriate here to mention the usefulness of single particle anisotropic potentials in
modelling the properties of lyotropic and colloidal systems. Here, concentration
changes are extremely important in determining phase behaviour. For example,
rod-shaped colloidal particles will form nematic phases characterized by a significant
change in the number density of rods at the orientational phase transition. Such
transitions are well modelled by single site anisotropic potentials [35].

b)
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0
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1 2 3 4
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0

1
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Figure 3. The Gay–Berne potential plotted as a function of four fixed orientations, side-to-side, cross,
T-shape and end-to-end, from three variants of the model with � ¼ 2, � ¼ 1. (a) � ¼ 3, �0 ¼ 5, (b) � ¼ 3:6,
�0 ¼ 5, (c) � ¼ 3, �0 ¼ 1: Graphs are reproduced from data used in figure 1 of reference [46]. The distance r is
plotted in terms of �s and the potential is plotted in terms of a Lennard-Jones well depth �o. The form plotted
is a cut-and-shifted potential, which is cut at a spherical cutoff of 4�s and shifted to zero at the cutoff.
This slightly perturbs the relative well depths of the four potential wells shown at larger distances.
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At the most realistic end of the modelling spectrum are atomistic models where each
atom is represented within a simulation, as shown in figure 5. Here, the full complexity
of intra- and intermolecular interactions can be modelled. While a clear disadvantage of
this approach is computational cost, this provides the only practical route for studying
the influence that subtle changes in molecular structure have on phase behaviour.
The early work in this area has been reviewed previously [62, 63]. Below we concentrate
on recent progress.

4. Progress in atomistic simulations

The rapid rise in CPU speed over the last 10 years, has vastly improved the capacity
to carry out atomistic work, leading to a number of simulation studies of nematics.
A decade ago, state-of-the-art work used united atom descriptions, with rather
approximate force fields, truncated electrostatic interactions and run lengths of less
than 1 ns. Today the state-of-the-art uses ab initio derived all-atom force fields,
Ewald summation for long-range electrostatics and typical run lengths of at least
a few ns or, possibly, several 10 s of ns.

4.1. Force fields for atomistic simulation of liquid crystals

Improved force fields for modelling have dramatically improved predictions for all
forms of atomistic modelling. Cheung et al. [65] have produced a useful LCFF
(liquid crystal force field) suitable for many standard calamitic molecules, based on
the methodology used by Jorgenson in his work on the OPLS-AA force field for
biological systems. The approach is quite simple and easy to extend to other systems.
It employs a harmonic force field of the AMBER-type, which is sufficiently flexible

Figure 4. The Gay–Berne phase diagram [47] as a function of molecular elongation
for GBð� ¼ 3, �0 ¼ 5, � ¼ 2, � ¼ 1Þ (left-hand diagram) and GBð� ¼ 4, �0 ¼ 5, � ¼ 2, � ¼ 1Þ (right-hand
diagram). The phase diagrams are reprinted with permission from figures 1 and 20 of reference [47]. Copyright
1998 American Physical Society.
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to model many calamitic liquid crystals based on relatively simple organic building
blocks,

Eff ¼ Estretch þ Ebends þ Etor þ Evdw þ Eelec, ð4Þ

where the terms in equation (4) have the following forms:

Estretch ¼
X
bonds

1

2
klðl� leqÞ

2, ð5Þ

Ebends ¼
X
angles

1

2
k�ð� � �eqÞ

2, ð6Þ

Etor ¼
X
dih

X
i

1

2
kið1þ cosði� þ 	iÞÞ, ð7Þ

Figure 5. A snapshot taken from a molecular dynamics simulation of the molecule 4-(trans-4-n-pentyl-
cyclohexyl)benzonitrile (PCH5) in a nematic phase. The molecule is represented at a fully atomistic level
and the simulations were carried out by Dr. D. L. G. Cheung [64] at the University of Durham.
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Evdw ¼
X
i, j

4�ij
�ij
rij

� �12

�
�ij
rij

� �6
" #

, ð8Þ

Eelec ¼
X
i, j

1

4
�0

qiqj
rij
: ð9Þ

Here, intramolecular potentials are used for bond stretching, bond angle bending
and torsional interactions; electrostatics are modelled by partial charges interacting
through a Coulomb potential (equation 9) and van der Waal’s interactions are
modelled by a Lennard-Jones 12-6 potential (equation 8). In equations (5)–(9) the
symbols take their usual meaning [65], 1-2 and 1-3 non-bonded terms are excluded,
and 1-4 interactions are scaled in the usual way.

With today’s computer power, good quality ab initio calculations can be readily
employed to obtain bond stretching, bond bending and torsional potentials. Of these,
the latter are crucial, as changes in torsional potential will change molecular shape
significantly. So careful fitting must take into account all other terms in the force
field during the fitting process [65]. Figure 6 shows bond stretching potentials calculated
using density functional theory, with the PW91 GGA functional and a complete plane
wave basis set, fitted to obtain force field terms for equation (4). Partial charges can
also be obtained from quantum mechanical calculations. Currently, one of the useful
approaches to obtaining partial charges comes from fitting to the molecular electro-
static potential obtained via a high-level quantum calculation [66–68].

The 12-6 potential in equation (8) is, of course, approximate and the form of the repul-
sive term in particular is inaccurate for close approach. However, atoms in fluids sample
only the attractive part of the potential and the first part of the repulsive region.
Consequently, the 12-6 form works well enough in practise and avoids the need for a
more expensive exponential form. Despite recent improvements in calculation of disper-
sion within ab initio quantum calculations, no calculations on liquid crystal fragments are
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Figure 6. (a) Bond stretching potentials (from [65]) for the C–H bond in biphenyl [the ab initio data (�) and
the fitted data (-)] and the C–N bond in 4-cyanobiphenyl [the ab initio data (�) and the fitted data (-)].
Inset shows the variation of force with change in bond length, 	l. (b) The torsional angle potential (from [65])
for phenylcyclohexane [the ab initio potential (�) and the fitted potential (-)]. Reproduced with permission
from figures 1 and 5 of reference [65]. Copyright 2002 American Physical Society.
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likely to capture more than 75% of the dispersion interaction energy. Moreover, even if
accurate two-body terms were obtained, the lack of three-body (and higher) forces would
prove problematic. Therefore, the best practical approach is to use effective two-body
potentials that are fitted to the thermodynamics properties of small molecular fragments;
and which therefore take into account many-body effects in an average way. Jorgensen
pioneered this approach in his OPLS [69] and OPLS-AA [70] force fields for bio-
molecules, by fitting the densities and heats of vaporization of small molecules based
on a series of bulk phase calculations for molecular liquids. For liquid crystals the
approach is equally effective, and potentials fitted in this way transfer nicely to
liquid crystal simulations [65]. For the molecule n-4-(trans-4-n-pentylcyclohexyl)
benzonitrile (PCH5), a comparison of simulated and experimental densities is shown
in table 1 using potentials derived via this mechanism. The results are encouraging.
Both the densities and average order parameters, �SS2 ¼ P2 cos �ih (obtained from the
long molecular axes defined by the inertia tensor) are good. However, getting the bulk
density correct is one of the milestones towards eventually predicting transition tempera-
tures and it seems important that densities are predicted with rather better than 1%
accuracy before obtaining accurate transition temperatures becomes a reasonable propo-
sition. Although system size effects may well be significant for a system as small as 216
molecules, it is likely also that a slight over-prediction of the density of the nematic
phase leads to the simulated fluid in table 1 remaining nematic at 330K.

Progress towards polarizable force fields is now being made for some biomolecular
force fields, through the use of induced point dipoles [71], fluctuating charges [72, 73]
and recently through the use of the classical Drude oscillator model [74, 75]. A move
towards the use of these in liquid crystal simulations would also be interesting but
such studies have not yet appeared. Likewise, for crystal structure modelling, some
progress has been made in using distributed multipoles to improve the description of
electrostatic interactions [76]. This would be extremely computationally intensive
within an atomistic model of a liquid crystal fluid, if each individual atom was assigned
a multipole. Recently, Berardi and co-workers have provided a new algorithm for deriv-
ing a set of effective charges to improve the modelling of electrostatic interactions in
liquid crystals using only a limited number of interaction sites thereby greatly reducing
the computational cost required to include electrostatic terms [77].

4.2. Prediction of transition temperatures and structure in nematic fluids

The problems with system sizes and accurate force fields, mentioned above, has not
stopped the progress towards the first predictions of transition temperatures. To this

Table 1. Computed densities and order parameters from a simulation of 216 molecules of 4-(trans-
4-n-pentylcyclohexyl)benzonitrile (PCH5). Data taken from reference [78].

T/K h�i/kgm�3 �expt/kgm
�3 �SS inertia

2
�SS expt
2

300 997.5� 7.4 963.0 0.68� 0.02 0.63
310 992.9� 8.0 956.5 0.65� 0.01 0.58
320 981.1� 8.1 949.6 0.55� 0.03 0.50
330 972.9� 10.0 – 0.51� 0.04 0.00
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end, there are two important recent studies. Reference [79] was the first to show the
spontaneous growth of a liquid crystal phase from an isotropic phase using atomistic
potentials. This is shown in figure 7 for the molecule 4,40-di-n-pentyl-bibicyclo[2.2.2]
octane (5,5-BBCO), where, with a united atom model, an isotropic system is
quenched to a temperature well inside the expected range of stability for a liquid
crystal phase. Here, spontaneous growth in orientational order occurs over 12 ns.
In this study [80], several independent quenches were undertaken each requiring similar
run times.

From earlier work on simplified potentials, such as the Gay–Berne mesogen
(section 2), one can estimate that 5 ns may be a reasonable time scale for the forma-
tion of a nematic from an initial isotropic configuration (growth of order usually
occurs in <500 000 time-steps for GB systems and the reduced time-step in such
simulations corresponds to around 10 fs or less of real time). However, the packing
in Gay–Berne systems is rather less dense than in real molecules and there are no
conformational changes. So time scales for LC growth may be expected to be
longer in more realistic models. Unfortunately, close to the phase transition the
situation is far worse than one would predict. For the first three members, n¼ 0–3
of the homologous series of alkyl-4-(40-cyanobenzylidene)aminocinnamates, Zannoni
has studied the order of the system, close to the phase transition temperature
using an all-atom model. As shown on the right-hand-side of figure 7 for the
n¼ 2 system, the simulation times required to check mesophase stability can
approach 50 ns.

The structures of the first three phenyl alkyl-4-(40-cyanobenzylidene)aminocinnamate
are shown in figure 8. In these all-atom models, long times are required to sample
different conformational states (considerably longer than in the united atom model
of 5,5-BBCO mentioned above) and this slows down equilibration. Moreover, if the
density for these systems is calculated as a function of temperature (figure 8), it becomes

0 2 4 6 7 10 12

time/ns

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
S

2

Figure 7. Left: spontaneous growth of nematic order for the molecule 4,40-di-n-pentyl-bibicyclo[2.2.2]
octane (5,5-BBCO) for a state-point in the nematic phase at 300K (taken from figure 2 of reference
[79] reproduced with permission from Taylor & Francis Ltd. http://www.tandf.co.uk). Right: the
order parameter (P2 ¼ S2) for two temperatures for the n¼ 2 homologue of the phenyl alkyl-4-(40-cyanoben-
zylidene)aminocinnamate series. (Taken from figure 4 of reference [81] reproduced with permission from
Wiley-VCH.)

432 M. R. Wilson

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



clear that this is almost continuous right through the phase transition. While this is
gratifying from the point of view of reproducing the behaviour of the real system,
the removal of a discontinuous volume change eliminates much of the entropic driving
force for mesophase formation seen in the Gay–Berne and hard-particle systems
discussed in section 3. (Hence, the need for long time scales in this work.) None the
less, the temperature dependent results for the order parameter in figure 8 are very
impressive. It now seems possible that clearing temperatures can be predicted to
within 15K or better. For the systems shown in figure 8, Beradi and co-workers are
also able to show a convincing odd–even effect, which is often seen in the transition
temperatures of many thermotropic LCs. This arises because the structure of the
n¼ 1 homologue leads to the terminal phenyl ring being unable to adopt a good
alignment with the liquid crystal director, something which does not apply for the
n¼ 0 and n¼ 2 homologues.

Figure 8. Left: the structures of the first three homologues n¼ 0, n¼ 1 and n¼ 2 of the phenyl alkyl-4-(40-
cyanobenzylidene)aminocinnamate series showing the main rigid molecular axis in the molecule between
nitrogen (1) and carbon (2), (taken from figure 1 of reference [81]). Right: the average
order parameter (circles) and the average density (squares) as a function of temperature for three
phenyl alkyl-4-(40-cyanobenzylidene)aminocinnamates. The grey line represents a Haller fit to the order
parameter hP2iHaller ¼ ð1� hP2iisoÞð1� T=TNIÞ

�
þ hP2iiso for T � TNI and assumes a weakly

first-order transition for the system. (Taken from figure 6 of reference [81] reproduced with permission
from Wiley-VCH.)
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Atom-level simulations allow for the study of changes in molecular structure within a
liquid crystal. An early example of this was provided by the work of Wilson and Allen
[82, 83], who studied the structure of the molecule trans-4-( trans-4-n-pentylcyclohexyl)
cyclohexylcarbonitrile (CCH5) in the nematic and liquid phases. Here, it is possible to
calculate dihedral angle distribution functions, S ð Þ, for dihedrals in the C5 chain as
a function of temperature in the two phases. The effects of temperature in changing
the Bolzmann distribution for these dihedrals can be addressed by evaluating the
underlying effective torsional potential v ð Þ, where

S ð Þ ¼
1

q
exp
�v ð Þ

kBT

� �
ð10Þ

for a partition function, q, which is fixed by the minimum of the potential. v ð Þ in the
nematic phase shows clearly that gauche conformations of odd-dihedrals are less
favoured than those of the even dihedral because the former lead to bent structures
in which the molecular long axis is unable to align well with the director of the
system (figure 9). There is therefore a strong coupling between the internal molecular
structure and the structure of the surrounding fluid, which gives rise to an average
molecular shape change as the molecule moves between phases. Such an effect is
predicted by molecular field theory and helps explain the change in order parameter
of C–D bonds within a deuterated chain of a liquid crystal, as studied by NMR [84].
This has been seen now in a number of simulation studies, e.g. [78, 85, 86]. The lack

Figure 9. Structure of the molecule CCH5 showing different chain conformations: ttt, gtt, tgt, ttg.
The introduction of a gauche conformation in the even dihedral angle, tgt, keeps a linear shape, whereas
the introduction of a gauche conformation in either of the odd dihedral angles gtt or ttg leads to a bent
molecular shape.
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of this structural change for single site potentials is one of the clear deficiencies in
such models.

5. Calculation of materials properties for atomistic and mesoscale models

The importance of optimizing LC material properties is well known. It goes back to the
pioneering work of researchers in the 1970s, who realized that the use of LCs in (twisted
nematic) displays depended on designing new stable LC molecules with a large dielec-
tric anisotropy. It continued as LCs were optimized further to have the right tempera-
ture range, order parameters, elastic constants and viscosity by the painstaking
development of suitable mixtures. Initially, this was carried out by trial and error,
though a number of empirical rules now exist to guide mixture formulation. Today,
the experimental task of developing new LC materials with desired properties remains
a huge one, which is made more important by the large range of new applications for
LCs, which are currently being explored (see section 1).

From the simulation point of view, prediction of material properties is still in its
infancy. However, the last few years have seen some important advances and it
seems clear that researchers are much closer to the goal of ‘molecular engineering’,
where simulation can be used to relate molecular structure to bulk material properties
and new materials can be designed purely on a knowledge of how changes in molecular
structure influence phase behaviour. In this section, some of the recent progress made
in the areas of elastic constants, rotational viscosity and helical twisting powers is
discussed. The work below concentrates on the practical aspects of obtaining material
properties from molecular simulation. The interested reader may also refer to the
excellent article by Allen and Masters [87], which reviews some of the underlying
theory linking macroscopic variables to microscopic orientational stresses and strains.

5.1. Elastic constants

Neglecting surface terms, the distortion free energy of a nematic liquid crystal can be
written as

F ¼
1

2

Z
dr K1 r � nðrÞ½ �

2
þK2 nðrÞ � r � nðrÞð Þ½ �

2
þK3 nðrÞ � r � nðrÞð Þ½ �

2
� �

ð11Þ

where n is the director and the scalars K1, K2 and K3 are elastic constants [88]. Each
elastic constant is associated with a separate mode of distortion of the nematic director:
splay – K1, twist – K2 and bend – K3. Any distortion of a nematic therefore carries
an energy cost, which depends on the magnitude of the elastic constant(s) associated
with it. The length scales normally associated with director distortions are long
compared to the molecular scale. Despite this, the elastic constants have an underlying
dependence on the molecular interactions of nematogens themselves. It is therefore
possible to change elastic constants by changing molecular interactions. In all liquid
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crystal displays the electro-optic switching depends on a field-induced distortion of the
director; and, in most current commercial displays, the relaxation of director back to an
undistorted state relies wholly on elastic restoring forces (i.e. is not switched).
Consequently, elastic constants are one of the key bulk properties that determine the
behaviour of LC materials in electro-optical devices.

There are a number of techniques that can be used to obtain K1, K2 and K3.
In common with other material properties, it is possible to mimic the setup for experi-
mental measurements within a simulation. For elastic constants this involves studying a
Freedericsz-like transition within a simulation by perturbing a slab of simulated liquid
crystal with an orienting field; or, more subtly, by perturbing the system with an orient-
ing field which varies sinusoidally in space with a specified wavenumber [89].
Alternatively, it is possible to sit at equilibrium in a simulation and to monitor the
wavelength dependence of thermally excited orientational fluctuations. An early
paper by Cleaver and Allen [89] compared such methods for the simple Lebwohl–
Lasher lattice model (section 3), studying a system of over 32 000 particles. They
conclude that the different methods provide consistent results. However, the orienta-
tional fluctuation method gives rather better statistics and is suitable for study with
relatively small numbers of molecules. It is therefore far more applicable for study
with off-lattice models.

In the orientational fluctuation method, elastic constants can be obtained by first
calculating the ordering tensor in reciprocal space

Q̂Q�� kð Þ ¼
V

N

XNm

i¼1

3

2
ui�ui� �

1

3
	��

� �
exp ik � rið Þ, ð12Þ

where k is a wavevector of the simulation box and the sum is taken over all molecules,
Nm. Q kð Þ is then transformed into the director-based frame with n ¼ ð0, 0, 1Þ. In this
coordinate system, the orientational fluctuations can be written as

Q̂Q13 kð ÞQ̂Q13 �kð Þ

D E
¼ Q̂Q13 kð Þ

��� ���D E
¼
ð9=4Þ S2h iVkBT

K1k
2
1 þ K3k

2
3

, ð13Þ

Q̂Q23 kð ÞQ̂Q23 �kð Þ

D E
¼ Q̂Q23 kð Þ

��� ���D E
¼
ð9=4Þ S2h iVkBT

K2k
2
1 þ K3k

2
3

, ð14Þ

which are valid in the limit of small k. Plotting

W13 k1, k3ð Þ ¼
ð9=4Þ S2h iVkBT

K1k
2
1 þ K3k

2
3

ð15Þ

as a function of k21 and k23 provides a surface from which a fit to a bivariate polynomial
in k21 and k23 can be made. K1 and K3 can be extracted from the fit. In a similar way,
plots of

W23 k1, k3ð Þ ¼
ð9=4Þ S2h iVkBT

K2k
2
1 þ K3k

2
3

ð16Þ
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yield K2 and K3. Results from this method are shown in table 2 for two Gay–Berne
models GBð� ¼ 3, �0 ¼ 5,� ¼ 2, � ¼ 1Þ and GBð� ¼ 3, �0 ¼ 5,� ¼ 1, � ¼ 3Þ. All three
elastic constants increase with density for similar values of the order parameter. For
fixed density, the two state points for the GBð� ¼ 3, �0 ¼ 5,� ¼ 1, � ¼ 3Þ system show
the expected fall in elastic constants with increasing temperature/decreasing hS2i.
An important point to note from table 2 is that in some cases the twist elastic constant,
K2, is larger than K1. In comparison, most nematogens used in displays have
K3 � K1 > K2 (with K3 > K1 as temperature is cooled towards a nematic to smectic
phase transition). In section 2, it was pointed out that there were unrealistic features in
the phase diagram of a GBð3, 5, 2, 1Þ particle. The relatively low K1=K2 ratio is also a fea-
ture of the model and this can probably be attributed to the low value of �0 ¼ 5 compared
to what is expected for many real mesogens. This is manifested in a relatively small
difference in the side-to-side and T-shape potential wells plotted in figure 3.

While the director fluctuation method provides an excellent robust method for
determining the elastic constant with quantifiable errors, there have been other methods
developed that can also be applied to off-lattice systems. Most prominent are studies
based on the direct correlation function (DCF) of a nematic. While approximate
theories exist for the latter, it has recently become possible to calculate the DCF for
a nematic from simulation without approximation. In seminal work [91, 92], Schmid
and co-workers show how to obtain the DCF for a nematic by taking into account
the dependence of pair correlations on the orientation of the director. The DCF
can then be used to obtain K1, K2 and K3 from the Poniewierski–Stecki formulae
[93]. As a comparison, Schmid and co-workers have calculated elastic constants for
a system of soft ellipsoids [91] and compared the results for this technique with
the orientation fluctuation method, obtaining good agreement. There have also
been techniques developed to obtain K2 directly from simulation, most notably from
the torque density in a simulated chiral nematic [94], from a simulation of the
Freedericksz transition [95] and a new technique involving a two-particle average in
a homogeneous nematic [96].

The consistency of results from the best studies give a high degree of confidence in the
methods. However, the relatively large number of molecules required means that it is
difficult to apply the techniques to atomistic studies with any degree of certainty.
In particular, for the director fluctuation technique, system sizes of around 16 000
are required to generate a substantial uncurved section in the 3D surface plots of

Table 2. Elastic constants from Gay–Berne mesogens calculated via the orientational fluctuation method.
Data are taken from reference [90] with permission from the American Institute of Physics. Pairs of K1, K3

values calculated from W13 are given along with pairs of K2, K3 values calculated from W23. Estimated
statistical errors in the final digit(s) are given in parentheses.

GB model �* T* K1 K3 K2 K3 hS2i

GB(3,5,2,1) 0.32 0.90 0.652(33) 2.01(08) 0.676(55) 2.01(10) 0.674(2)
GB(3,5,2,1) 0.33 1.00 0.697(74) 2.59(19) 0.718(42) 2.27(20) 0.708(13)
GB(3,5,2,1) 0.35 2.00 1.511(25) 4.79(15) 1.099(98) 5.23(18) 0.663(3)
GB(3,5,2,1) 0.38 3.00 3.55(14) 13.5(1) 2.53(12) 13.0(5) 0.730(5)
GB(3,5,1,3) 0.30 3.40 2.17(12) 3.97(6) 1.71(11) 3.95(6) 0.553(5)
GB(3,5,1,3) 0.30 3.45 1.59(2) 2.23(8) 1.34(2) 2.19(10) 0.478(5)
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W13ðk1, k3Þ and W23ðk1, k3Þ. While fits for smaller system sizes of around 2000 may be
possible, this remains a large number of molecules for atomistic level simulations.
Moreover, statistics are much poorer if the director is unconstrained and free to diffuse
in response to thermal excitation (director constraints are not easy to implement at the
atomistic level). Similarly, the DCF method requires knowledge of the DCF over large
distances (low k). Additionally, Cð1, 2Þ is typically of the range of the intermolecular
interaction, which would become very large for atomically detailed systems with
long-range electrostatic interactions. However, with recent increases in computer
speed, it should now be possible to explore the relationship between molecular potential
and elastic constants by coarse-graining from atomistic to mesoscale models; and
then using the director fluctuation or the DCF methods to obtain the elastic constants.
Such studies have yet to be carried out.

5.2. Rotational viscosity

The switching times for a liquid crystal in a electro-optic device depend on the
rotational viscosity �1. For example, on and off times for a twisted nematic display
are directly proportional to �1. There are a number of possible routes to �1 involving
equilibrium and non-equilibrium molecular dynamics. In the former, a normal MD
simulation is carried out and an appropriate Green–Kubo integral is worked out
while the system remains at equilibrium. In the latter the system is coupled to the
field [97]. Much of the early work on rotational viscosities was carried out on simple
single site potentials, such as the Gay–Berne potential [97–99].

Non-equilibrium methods are not particularly attractive for atomistic simulations,
as the director must be constrained or reorientated and these tasks are not simple at
an atomistic level. However, equilibrium methods are more accessible. Using linear
response theory, Sarman and Evans [97] showed that �1 can be found from the integral
of the director angular velocity correlation function by

�1 ¼
kBT

V
R1
0 dth�2ðtÞ�2ð0Þi

, ð17Þ

where T is the temperature, V is the volume, kB is Boltzmann’s constant, and �2 is
obtained from the director angular velocity, X ¼ n� _nn, transformed into a frame of
reference with the director along the z-axis, such that

:! �1,�2, 0ð Þ: ð18Þ

Using the molecular long axes, obtained from the inertia tensor, to calculate the
director vector, n, equations (17) and (18) can be evaluated by monitoring director
fluctuations during an equilibrium simulation.

From the rapid decay of this correlation function shown in figure 10(b), it would
seem that this would be extremely promising as a method of extracting �1 values,
requiring only short simulation times. However, in reality the form of the decay func-
tion shown here emerges from noise only after careful time-averaging from run lengths

438 M. R. Wilson

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



of several nanoseconds. So there is no way of circumventing the need for extremely long
simulations in the pursuit of rotational viscosities.

As an alternative to equations (17) and (18), �1 can be obtained from calculations of
the director mean squared displacement, hn22ðtÞi ¼ hjnðtÞ � nð0Þj2i, in the long time limit

�1
2
¼ lim

t!1
lim
V!1

kBTt

Vhn22ðtÞi
, ð19Þ

as shown in figure 10(a) for a series of temperatures in an atomistic simulation of
PCH5. For most methods, it would be desirable to test the size dependence of these
results, especially in the light of the V!1 limit in equation (19). While this has
been done for GB fluids [100], at an atomistic level it is beyond current computational
limits to test the size dependence of the results by employing a series of successively
larger simulations. None the less the two methods appear to give comparable results
and a direct comparison with experiment for PCH5 (figure 11) points to this being
a promising way of obtaining �1.

It is possible also to obtain �1 from calculations of the rotational diffusion (RD) coef-
ficient, as described by Zakharov and co-workers [103, 104], and by forcing the nematic
director to rotate under the influence of an external field [105]. These have been shown
to give good agreement with experiment. However, in the case of the RD method, the
effect of approximations used in the solution of the appropriate kinetic Fokker–Planck
equation are not fully clear. A detailed analysis of all these approaches and their system
size dependence would be pertinent.

5.3. Helical twisting powers

When chiral molecules are added in an achiral nematic, they transmit their chirality to
the whole system. The effect is long range, resulting in a left-handed or right-handed
chiral nematic phase with a helical twist, which can be characterized by a pitch, P.
Opposite enantiomers are found to induce opposite twists in the nematic host.

0 1 2 3

t (ps)
−0.0002

0

0.0002

0.0004

<Ω2 (t). Ω2 (0)> (ps−2) 

Figure 10. (a) Director mean squared displacements from simulations of 125 PCH5 molecules at four
temperatures. (b) Angular velocity correlation function for the liquid crystal director of PCH5 at 310K
[101]. Reprinted from reference [101] with permission from Elsevier.
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The sign of the twist induced is related to the nature of the intermolecular interactions
between dopant and solvent, and is shown below to be closely related to molecular
shape. The effect is uncorrelated to the optical activity of enantiomers in an isotropic
solution. Different molecules are known to induce different levels of twist in a host
phase. This can be measured through a property known as the helical twisting power
(HTP), �M, where

�M ¼ Pcwrð Þ
�1: ð20Þ

Here, cw is the weight concentration of chiral dopant and r is the enantiomeric purity of
the dopant. Chiral molecules with very high HTPs ð>100 mm�1Þ have significant techno-
logical applications. They can be used in liquid crystal displays and in chiral polymer
films to improve the viewing angle of a display [106–108]. There are also possible
applications in polymer-stabilized blue phases [6], which may provide a new generation
of devices: fast light modulators and tunable photonic crystals.

Nordio, Ferrarini and co-workers [109–116] have developed a useful theoretical
model to link structure with HTP. In their surface chirality model it is assumed that
the alignment of a solute molecule in a locally nematic environment can be determined
from the shape of the solute molecule. It is therefore the chiral nature of the molecular
surface which exerts a torque on the local nematic director. This is transmitted over
distances many times its molecular length due to the elastic properties of the nematic
phase. In the theory the value of �M can be found from

�M ¼
RT"�

2
K2�m
¼ D�, ð21Þ

where ", �m and K2 are, respectively, the strength of the orienting potential, the
molar volume of the nematic solution and the twist elastic constant of the solvent.

Figure 11. Comparison of calculated and experimental values of �1 for PCH5. Theoretical results from
reference [101] (squares – from equation 19, diamonds – from equation 17). Experimental results (triangles)
taken from reference [102].
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The quantity � is defined as the chirality order parameter and describes the coupling
between the chiral surface of the molecule and its orientational ordering. Positive
values of � lead to a right-handed twisted nematic being induced in the liquid crystal
host. Calculation of � requires three tensors: a surface tensor T obtained from a
Connolly molecular surface, a helicity tensor Q representing the twisting power of
the surface and an ordering tensor S obtained from the orientational distribution
function of the molecule. The latter depends on a mean field orienting potential in
which the surface normal at each point on the surface lowers its interaction energy if
it can lie perpendicular to the local nematic director. In this approach

� ¼ �
2

3

� �1=2

QxxSxx þQyySyy þQzzSzz

� �
, ð22Þ

where the diagonal components of Sii and Qii are obtained by expressing S and Q in the
principal axis system of the surface tensor T. The theory is described in more detail
elsewhere [110, 115–117]. Thus the HTP depends, not only on the intrinsic twisting
power of the molecule itself, but also on the ordering of the molecule in the
nematic host. The success of the theory is shown for a set of rigid chiral dopants in
table 3. Here, the sign of � is correct in all cases and if the value of D is set by reference
to an experimental best fit, �M is predicted with an average error of �16 mm�1 [117].

In addition to the chirality order parameter, there are other methods of studying
HTPs. Recent success has been achieved with a scaled chiral index [120, 121] and a
mean field approximation that takes into account chiral dispersive interactions [122].
In the case of the former, no account is taken of the surrounding fluid. Instead, HTP
is seen as an intrinsic property of a molecule, which is proportional to the index

G0S ¼
4!

3N4

X
all permutations of i, j, k, l¼1���N

wiwjwkwl �
rij � rkl
� �

� ril
� �

rij � rjk
� �

rjk � rkl
� �

rijrjkrkl
� �n

rmil

" #
, ð23Þ

Table 3. Diagonal components of the helicity tensor Q, and the ordering matrix S, chirality order parameter
�, and experimental helical twisting powers �M from references [118, 119] for the bridged biaryl molecule (1–8)
and helicene molecules (M1–M4). Calculated values are taken from reference [117] with permission from the

American Institute of Physics.

Molecule Qxx Qyy Qzz Sxx Syy Szz �=Å3 �M=mm
�1

1 �103 79 24 0.05 �0.37 0.31 þ21.9 þ69
2 90 �67 �23 0.06 �0.38 0.31 �19.2 �65
3 24 �85 62 0.03 �0.33 0.31 �39.1 �71
4 125 �101 25 �0.02 �0.32 0.35 �17.1 �55
5 92 �63 �29 0.12 �0.38 0.26 �22.4 �21
6 �116 92 25 0.02 �0.35 0.33 þ21.6 þ85
7 �137 93 45 0.06 �0.31 0.26 þ21.0 þ80
8 �124 67 57 0.14 �0.33 0.19 þ23.4 þ79
M1 69 �68 �1 0.04 �0.39 0.36 �23.6 �55
M2 61 �44 �17 �0.04 �0.37 0.40 �5.8 �9
M3 37 �55 18 0.05 �0.39 0.34 �23.8 �20
M4 41 �50 9 �0.01 �0.39 0.40 �18.2 �13
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where wi, wj, wk, wl are atomic weights associated with atoms i� l (normally set
to 1.0 for HTP measurements) and the use of n¼ 2 and m¼ 1 produces a dimensionless
index. While the results from this index are normally very good [120, 121], in a few
molecules this approach has been seen to go spectacularly wrong. When a molecule
contains a rigid chiral core and a flexible achiral chain, the chirality of the core
atoms can continue to add a large term to the sum in equation (23) even when
atoms are a considerable distance from the core [123]. This can be prevented by
introducing a cutoff to the distances employed in equation (23). The use of a cutoff
may physically relate to the influence of the chiral molecule on surrounding solvent
molecules, even though no solvent/solute interactions appear in the theory. That is,
beyond certain separation distances a combination of four atoms cannot reasonably
exert a twist on a neighbouring solvent molecule, so the contribution from the four
atoms should not be included in the evaluation of equation (23). Kamberaj et al.
[124] have recently looked at the relationship between � and G0S, showing that each
quantity is sensitive to different aspects of chirality in a molecule. Moreover, they
show that a whole series of surface indices are possible and may be necessary to
represent all aspects of chirality for any generalized structure. However, the physical
relation of each index to experimentally measureable quantities, such as HTP, remains
an open question.

An interesting extension to the Nordio–Ferrarini theory comes from examining how
� varies with conformation, through an internal Monte Carlo approach [125]. Not only
does this provide a route to calculating �M for flexible molecules, it also provides some
intriguing insights into chirality. � is seen to vary considerably with molecular confor-
mation and even to change sign. Moreover, because the balance of conformations in a
molecule usually changes with temperature, this leads to the prediction of a temperature
dependent �M. In the extreme case, where high temperature conformers have the oppo-
site sign of �M to those preferred at low temperature, Earl and Wilson have shown [125]
that the changing balance of conformations can explain the remarkable property of
helical twist inversion which can occur in some chiral nematic materials [126, 127].

Thisayukta et al. have reported the experimental observation that doping a chiral
solvent with an achiral banana molecule leads to an increase in the twist of the phase
[128]. Looking at the achiral bananas with the combined chirality tensor/Monte
Carlo technique provides an interesting insight [125, 129]. Individual conformations
of bananas, such as the one shown in figure 12, can exhibit extraordinary large
values of �, which arise when the molecules themselves twist into a helical shape. It
therefore seems likely that in a chiral solvent, the helical conformations which want
to twist with the solvent have a lower free energy and are preferentially selected in
favour of their enantiomers, leading to an increase in the twist of the phase. If this is
true, this would mean that preferential selection of chiral conformations is being
mediated by the chirality of the host phase: a surprising result.

In the majority of experimental measurements of �M, it is usually found that �M is
solvent independent (see below for reasons). There are, however, a few cases where the
sign of �M has been reported to change with a change in solvent polarity. Here it seems
likely that the dramatic change in �M arises from a change in the balance of
conformers induced by specific solute–solvent interactions. The single molecule surface
chiralitymodel, of equation (21), only considered the interactionwith the solvent through
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the presence of a mean field interaction term �. However, it would be desirable to attempt
to develop methods to include the influence of solute–solvent interactions. To this end
there have been promising theories developed by Allen and co-worker with associated
trial simulations for single site potentials [94, 130]. In the first of these theories [130] it
can be shown that, if an enantiomer is immersed in a nematic solvent with a uniform
twist given by a wavevector k, P ¼ 2
=kð Þ, there is a chemical potential difference, ��,
between the enantiomer and its mirror image in the same twisted solvent. This arises
because the enantiomer which wants to twist in the same direction as the phase will
have a lower free energy. In the limit of low k, the helical twisting power is directly pro-
portional to �� and inversely proportional to the twist elastic constant of the bulk phase

� ¼
��

8
K2k
, ð24Þ

Figure 12. Left: the distribution of � values from a Monte Carlo simulation of an achiral dopant.
Top: variation of � through the course of a simulation. Bottom: histogram of the distribution of � values.
Right: an individual chiral conformation corresponding to a helical shape [129]. Figure reprinted with
permission from figures 4 and 5 of reference [129]. Copyright 1998 American Physical Society.
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with

�M ¼
2N�

Vcw
: ð25Þ

K2 can be obtained by the methods described in section 5.1 but in practice many
nematic solvents have similar K2 values. Consequently, a comparison of �� values
would be sufficient to extract out relative HTP values. Wilson and co-workers have
tested both theories for a group of rigid dopants in generic solvents represented by
Gay–Berne [131] and soft repulsive spherocylinder models [132]. To calculate �� the
enantiomers are grown into a twisted solvent in a sequence of Monte Carlo simulations
where the chiral solute is gradually introduced into the twisted solvent. Using a highly
twisted solvent to increase ��, the approach is seen to work quite well, predicting
the correct sign of ��. However, the changes in �� are less than 1 kJmol�1 from
free energy changes that are closer to 20 kJmol�1 for each growth sequence; hence
the error bars for calculated HTPs are large. Consequently, the approach would
be rather difficult to extend to flexible molecules, where obtaining accurate conforma-
tional averaging would make it harder to obtain precise results.

An interesting alternative approach to obtaining HTPs in a solvent was introduced
by Germano et al. [94]. Here, a method is presented to obtain the equilibrium pitch
wavenumber, q, and the twist elastic constant, K2, of a chiral nematic liquid crystal
simultaneously by sampling the torque density. The method requires simulations of
a dopant in both a twisted and untwisted solvent. If K2 is already known, then for
a dopant with weight concentration, cw, in an untwisted nematic of volume, V, the
HTP can be obtained from the expression

�M ¼
�zzh i0, �

2
cwVK2
, ð26Þ

where h�zzi0, � is the torque density measured with the nematic director constrained
to the x , y plane. Earl and Wilson [117] have shown that this expression can be applied
to a series of atomistic rigid dopants in a generic Gay–Berne solvent. As K2 has
been calculated already for suitable GB state-points, a single calculation evaluating
h�zzi0, � in a nematic solvent is sufficient to obtain �M. This method removes
the need for twisted periodic boundary conditions and gives reasonable values for
�M. As with the �� method, the real computational challenge is in obtaining
really good statistics in the measurement of relatively small quantities. As yet
this method has not been applied to solvents which are modelled at an atomistic
level but if the statistics were favourable, it may provide an interesting route to the
study of chiral interactions.

6. Coarse-grained simulations for complex liquid crystalline materials

6.1. A coarse-grained model for flexible macromolecular liquid crystals

There are still severe size limits imposed on atom-level studies, which make it difficult to
use such calculations for high molecular weight liquid crystals. None the less, questions
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about the molecular organization within a LC phase, the presence or absence of
microphase separation and the role played by molecular interactions in influencing
material properties are fundamental questions to pose. None of these questions can
be answered by a continuum level description of the system, and so the development
of suitable coarse-grained models becomes important.

A good practical approach to such systems is provided by the coarse-grained model
of Wilson and co-workers [133, 134], which combines anisotropic potentials that are
commonly used for mesoscale simulation, with Lennard-Jones sites. In practice this
is done by using a force field such as equation (4) with the addition of extra terms
for anisotropic sites. Equation (8) is rewritten as

Evdw ¼
XNat

i¼1

XNat

j>i

Uijð�ij, �ijÞ þ
XNat

i¼1

XNGB

j¼1

Uijð�ij, �ijÞ þ
XNGB

i¼1

XNGB

j>i

Uijð�ij, �ijÞ ð27Þ

for Nat isotropic sites and NGB anisotropic sites, plus additional harmonic ‘GB-angle’
interaction terms, of the form shown in equation (6), where the angles � and �eq
are defined in terms of the angle between a bond to a neighbouring particle and a
fixed axis in the anisotropic particle (such as the long axis in a uniaxial particle).
Depending on the degree of coarse-graining involved, the bond angle bending
and torsional terms can be removed and bond-stretching terms can be replaced by
a FENE-type soft potential. Typical choices for anisotropic potentials could be
soft-repulsive spherocylinders [135] or Gay–Berne particles, as these are already
known to be good for low molecular weight liquid crystals and are differentiable to
provide forces and torques or gorques for use in molecular dynamics simulations
with leap-frog [136] or Verlet type integration schemes for anisotropic sites [137].
However, if differentiable analytic forms are not needed, (for example in a
Monte Carlo simulation), digitized tabulated coarse-grained potentials, which are
non-continuous, can be used instead [138].

It is worth noting that electrostatic interactions can also be used in this type of
coarse-grained model. In practice, however, one of the common aims of coarse-graining
is to remove the electrostatic interactions (which are long-range and therefore expensive
to compute) wherever possible, or, in cases where a removal of electrostatics interac-
tions would be unphysical, to simplify from multiple sites containing partial charges
to a smaller number of coarse-grained sites containing embedded dipoles.

It should be noted also that coarse-graining methods for thermotropic liquid crystals
are not unique and many of the techniques used for liquid crystals can be used for
polymers and other complex fluid systems. For example, a coarse-grained model
using several Gay–Berne sites has been used by Essex and co-workers in a recent
study of the hydrocarbon region of a biomembrane [139]; membrane simulations
with coarse-grained isotropic potentials have been reviewed by Saiz and Klein [140];
and recent simulations by Marrink, Mark and co-workers provide impressive demon-
strations of self-assembly of model lipids into bilayers and vesicles [141–145]. There
has also been considerable simulation work on amphiphilic polymer chains [146, 147]
and rod-coil diblock copolymers [148]. Important in the latter work has been the
use of dissipative particle dynamics (DPD) techniques [149, 150] to provide a way of
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speeding up the equilibration of complex phases. Inherent in the DPD work is the
employment of underlying ultra-soft-potentials, allowing particles to pass through
each other and thereby improving equilibration times greatly. Such technique have
recently been exploited by Levine et al. [151] and Gomes and co-workers [152] to
study nematic and smectic mesophases.

6.2. Liquid crystal polymers

Liquid crystal polymers (LCPs) fall into two main classes [153]. Main chain liquid
crystal polymers (MCLCPs) normally incorporate rigid mesogenic groups within the
polymer backbone. In contrast, side chain liquid crystal polymers (SCLCPs) contain
mesogenic moieties as pendant groups linked to the backbone via flexible spacers
[154]. The latter decouples the mesogens slightly from the backbone conformation;
however, the backbone still exerts a significant influence on mesomorphism. There is
considerable room for chemical modification to control properties. Thus in SCLCPs,
the structure of the pendant mesogenic groups, the nature of the polymer backbone,
the molecular weight, the tacticity and the length of the flexible spacer length all
exert an influence on mesophase formation.

The hybrid anisotropic/isotropic group model, described above, naturally lends itself
to polymeric systems. Individual mesogenic groups can be replaced by a Gay–Berne
particle and the polymer chains can be modelled by a collection of united atom
groups. One of the first main chain simulations studied short polymer chains of the
form shown in figure 13. For m¼ 6, n¼ 10, it proved possible to spontaneously see
the formation of a nematic phase on cooling from an isotropic melt, as shown in
figure 13. As in real main chain polymers, an odd–even dependency of thermodynamics
properties on spacer length was seen in the simulation results.

A similar hybrid model provides some interesting insights into the molecular
structure within a SCLCP [156]. If the polymer is cooled down from a high-temperature
anisotropic melt at 500K, microphase separation starts to occur, with the mesogenic
groups forming domains, which are isolated from each other by the polymer backbone
(figure 14a). Further cooling and annealing leads to the mesogenic moieties within these
domains aligning; and if the polymer is annealed in the presence of an external ordering
potential (mimicking an applied magnetic field) a uniformly aligned liquid crystal is
formed (figure 14b,c). In the annealing process, the polymer backbone is excluded
from the liquid crystalline layers, becoming confined into regions of about the same
dimension as a single smectic layer. In so doing it completely loses its random coil
conformation, which is seen in the high temperature isotropic melt, leading to a high
anisotropy in the backbone radius of gyration. Such a result ties in closely with the
interpretation of experimental X-ray diffraction [157], neutron diffraction [158, 159]
and small angle neutron scattering (SANS) [158–166] data.

An interesting result from the simulations is that the flexible spacer, which links the
backbone to the mesogenic units, appears to be excluded into sublayers either side of
the polymer backbone (figure 14b,c), a phenomenon which would be difficult to ‘see’
experimentally. Defects in the lamellar structure are seen also in the simulations and
the extent to which these occur is influenced strongly by the rate of cooling. In a typical
defect (seen in figure 14c) the polymer backbone bridges across a mesogenic region.
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In doing so, the well-ordered smectic layers are disrupted, leading to nematic ordering
of mesogenic groups in the neighbourhood of the defect.

6.3. Liquid crystal dendrimers

Liquid crystalline dendrimers (LCDr) open up many possibilities for interesting
molecular design. Liquid crystallinity can be induced by incorporating mesogenic
groups into the body of the dendrimer, which can lead to the formation of calamitic
nematic and smectic thermotropic phases [167]. An alternative strategy involves the
bonding of mesogenic groups to the ‘surface’ of a dendrimer [168]. Here, formation
of a liquid crystal would require a major rearrangement of structure. For example, in
carbosilane LCDrs it has been suggested that dendrimer molecules, which appear
spherical in structure, must rearrange internally to form either rods or discs in order
that liquid crystalline phases can form [169]. Rods can then lead to the formation of
a smectic-A phase and discs can self-assemble into columns, leading to the formation
of a columnar phase.

The coarse-grained model of equation (27) was adopted for the first literature
simulation of a liquid crystal dendrimer [170]. The model used was based on a carbo-
silane dendrimer, as shown in figure 15, in which the heavy atoms were represented with
Lennard-Jones sites and the liquid crystalline groups were represented by Gay–Berne
particles.

Putting the model dendrimer into a liquid crystal solvent, represented by Gay–Berne
particles, gives rise to interesting behaviour whereby the dendrimer spontaneously
changes structure from a spherical shape, which is adopted in a liquid, to a rod-
shape (as shown in figure 16). Here the chains coupling the mesogens to the dendrimer
core are able to rearrange so that the mesogens are able to align with the nematic

Figure 13. Snapshots showing the structure of a model main chain liquid crystalline polymer for the
model system with m¼ 6 and n¼ 10. Left: isotropic phase at 500K. Right: the nematic phase at 350K.
Isotropic groups are shown in white. Anisotropic groups are colour coded with green along the director.
Pure RGB colours represent mutually perpendicular directions. Figure drawn using simulation results taken
from reference [155].
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field of the solvent. It is suggested that this is the mechanism which mediates the
formation of a liquid crystal in the bulk dendrimer. To examine this, the distribution
functions from the dendrimer/solvent simulations can be used to help design a simpler
coarse-grained model, shown in figure 17, which is sufficiently simple to allow the study

Figure 14. Snapshots showing the separate parts of SCLCP molecules from a coarse-grained simulation
in the presence of an external potential of form, Eexternal ¼ ��

fieldûu2z , mimicking a magnetic field.
Yellow – polymer backbone. White – mesogenic units. Red – flexible spacer. (a) �field ¼ 0:0� 10�20 J after
38 ns annealing run at 350K. (b) �field ¼ 0:2� 10�20 J from original cooling run after 6 ns at 350K.
(c) �field ¼ 0:2� 10�20 J after further 38 ns of annealing at 350K. (d) �field ¼ 0:5� 10�20 J from original
cooling run after 6 ns at 350K. Reproduced from reference [156] with permission from the American
Institute of Physics.
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Figure 15. Chemical structure of a third generation carbosilane dendrimer studied in reference [170].
Left: chemical structure of the dendrimer. (The cyanobiphenyl group and the first part of the attached
ester, including the carbonyl carbon, act as a fairly rigid mesogenic group within the dendrimer.) Right:
schematic two-dimensional picture showing the branching points in the dendrimer leading to 32 terminal
mesogenic groups.

Figure 16. Configurations from a series of three time frames (left to right) showing the shape transition
from sphere to rod in a third generation liquid crystal dendrimer placed in a nematic solvent. Top frames show
the dendrimer with solvent removed. Reproduced from reference [170] with permission from the American
Institute of Physics.
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of bulk phases [171]. In figure 17, the mesogens are represented by soft repulsive
spherocylinders [132], and the chains and core have been coarse-grained by the use
of repulsive Lennard-Jones sites. In soft repulsive models, mesophase formation
occurs as density is increased. In preliminary results from this model [171], increasing
density leads to microphase separation into liquid crystal domains, which reorganize
to form a smectic layer morphology with the core of the dendrimer sandwiched in
the centre of the smectic layer (figure 17).

7. Some perspectives on the future

The rapid pace of computer development over the last decade has revolutionalized the
simulation of liquid crystalline materials. At the atomistic level, it is now possible to get
good descriptions of low molecular weight nematic materials and make reasonable
predictions of key material properties (see section 4). One likely development in this
area will take advantage of improved parallelization techniques to increase system
sizes to thousands of molecules, which may be sufficient to extract good results
for properties such as elastic constants that require larger system sizes than currently
available.

It should be noted that in related fields, such as polymer simulation, the last few years
have seen considerable success in linking modelling studies across the length scales. The
same level of progress has not been seen for liquid crystal systems. While the quantum
to atomistic route seems well founded (see section 4.1), the atomistic to mesoscale route
seems to be less well developed. Some of the most successful liquid crystal models, Gay–
Berne systems and spherocylinders, are in the mesoscale regime, but the phase
diagrams calculated for these systems are not always helpful in studying thermotropic
systems. In particular, the large density change at the phase transition between a liquid
and a liquid crystal seen in such systems does not normally occur for thermotropics.
So there is much work needed to generate models which can provide more faithful
representations of phase behaviour. If this can be achieved, it should be much
easier to move from atomistic to mesoscale by fitting to atomistic data. Hence, it
will be possible to use mesoscale models in a more predictive way, i.e. to explore the

Figure 17. Left: a coarse-grained model for a third generation carbosilane dendrimer. Right: snapshots
from three state-points at increasing density, showing from left-to-right: an isotropic phase, microphase
separation into mesogen-rich and non-mesogen-rich domains and a smectic-A phase. Drawn from simulation
results of a coarse grained model in reference [171, 172].
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relationship between structure and bulk phase behaviour and predict how changes in
structure can be used to engineer material properties.

One of the most interesting developments in liquid crystals arises from the synthesis
of new classes of polyphilic molecules. In polyphilic systems, it is possible to engineer
molecules to have different interaction regions, e.g. aliphatic, aromatic, fluoro, silox-
ane, and/or to incorporate a mixture of rigid liquid crystalline units and other flexible
constituent parts into the molecule. For simple diblock copolymers this process is well
understood and leads to self-assembly of regions containing similar interaction sites,
giving rise to a rich phase diagram. However, for more complicated molecules, with
many different competing interactions, self-assembly is more complex. Preliminary
synthetic work has indicated that this strategy can provide a route to engineering
new functional materials to act as biological mimics [12] and as new photonic materials
[11]. Here, the key is controlling self-assembly to produce well-defined materials that
are ordered at the nanoscale. For simulation, a real challenge is presented by this
area. It would be highly desirable if simulation could be used as an engineering tool
to help design new polyphilic liquid crystalline systems with the desired nanoscale struc-
ture for (say) a molecular electronics application. To this end, the progress made in
coarse-grained simulation models for liquid crystals (section 6) and similar work for
polymers chains [173–176] could point the way forward.
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